Article ID Journal Published Year Pages File Type
1574844 Materials Science and Engineering: A 2014 8 Pages PDF
Abstract
In the present study, the effects of trace amounts of beryllium (Be, 0.05 wt%) and scandium (Sc, 0.04 wt%) addition on the microstructures and thermal stability of Al-7Si-0.6Mg alloys were investigated. The results show that traces of Be and Sc significantly reduce the amount of the iron-bearing phase and the interdendritic shrinkage. Be transformed the acicular iron-bearing phases into the nodular Al-Fe-Si iron-bearing phase, which is less harmful to ductility. Moreover, the addition of Be increased the Mg content of the solid solution within the matrix, prompting greater precipitation of the metastable Mg2Si phase after T6 heat treatment and effectively enhancing the mechanical properties of the alloy. However, during the following thermal exposure at 250 °C for 100 h, the metastable Mg2Si phase grew into the coarse β-Mg2Si equilibrium phase, resulting in a decrease in the mechanical strength of the alloy. Meanwhile, the addition of Sc had insignificant effect on the amount of metastable Mg2Si phase that precipitated. However, here, the iron-bearing phase was a nodular Al12Si6Fe2(Mg,Sc)5 phase, which significantly enhanced the density of the castings. After the same thermal exposure procedure, it was remarkably found that the precipitation of fine Al3Sc particles effectively inhibited grain growth and hindered the movement of dislocations. These factors led to the Sc-containing alloy having better mechanical properties (strength and ductility) than the alloys without Sc or with Be during the following thermal exposure at 250 °C.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,