Article ID Journal Published Year Pages File Type
1575258 Materials Science and Engineering: A 2014 5 Pages PDF
Abstract

Single-pass compression tests were performed on a Gleeble-3800 thermo-mechanical simulator to study the dynamic recrystallization behavior of a low carbon vanadium-nitride microalloyed steel at the temperature in the range from 900 °C to 1050 °C and strain rate in the range from 0.1 s−1 to 10 s−1. Based on the flow curves from the tests, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The strain hardening rate versus stress curves were used to determine the critical stress (strain) or the peak stress (strain). The dependence of the characteristic values on Zener–Hollomon was found. The dynamic recrystallization kinetics model of the tested steel was constructed and the validity was confirmed based on the experimental results.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,