Article ID Journal Published Year Pages File Type
1575362 Materials Science and Engineering: A 2014 11 Pages PDF
Abstract
The effect of cast microstructure on bendability of automotive cast aluminum alloy A356 has been studied by machining sheet specimens and conducting V-bend tests. Specimens in the loaded condition are observed from the through-thickness section using a CCD camera and also using a scanning electron microscope (SEM). The latter allowed recording of high magnification images from the through-thickness region of the bend to determine aspects of strain localization and particle induced damage in the microstructure. In addition, the initial microstructure is utilized as a speckle pattern for further analysis of through-thickness strain development in the bent region using digital image correlation (DIC) method. The method is applied to unmodified and Sr-modified A356 compositions. The results indicate superior bendability of Sr modified A356 alloy compared to the unmodified alloy. The differences in bendability are attributed to the size and morphology of eutectic Si phase particles that undergo significant cracking in the tensile region of specimen during bending. The results demonstrate that high magnification SEM imaging of bent specimens coupled with DIC based strain analysis offers a useful method of analyzing the effect of microstructure on bendability of cast materials.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,