Article ID Journal Published Year Pages File Type
1575739 Materials Science and Engineering: A 2013 7 Pages PDF
Abstract
This article presents the tension-compression high cycle fatigue behavior of as-cast Mg96.34Gd2.5Zn1Zr0.16 alloy produced by semi-continuous casting at ambient temperature. The relationship between stress amplitude and cycles to failure is established, which indicates that fatigue strength of this alloy is approximately 105±8 MPa. Fracture surface of specimens were examined using a scanning electron microscope, indicating that the fatigue cracks all initiate from the oxides located at the surface. Different from other cast Mg alloys, there exist two kinds of unique fatigue morphologies at the fatigue propagation region, which consists of fine steps. Meanwhile, there is a fatigue life gap between 105 and 107 cycles on the S-N curve, which probably demonstrates that the growth rate of the fatigue cracks of as-cast Mg96.34Gd2.5Zn1Zr0.16 alloy is relatively large, and once the fatigue cracks form, the samples could fails in less than 105 cycles.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,