Article ID Journal Published Year Pages File Type
1576441 Materials Science and Engineering: A 2013 5 Pages PDF
Abstract

The ultra-microduplex structure was fabricated in a fully pearlitic Fe–0.8 wt% C steel after equal channel angular pressing (ECAP) at 923 K via the Bc route. The microstructures and mechanical properties, before and after deformation, were investigated using scanning electron microscopy and mini-tensile tests. The cementite lamellae are gradually spheroidized by increasing the number of ECAP passes. After four passes, the cementite lamellae are fully spheroidized. Microhardness and the ultimate tensile strength of pearlite increase with the strain, up to a peak value (after two passes) and then decrease significantly. The yield strength, elongation and percentage of reduction in area increase with the number of ECAP passes. The tensile fracture morphology changes gradually from brittle cleavage to typical ductile fracture after four passes.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,