Article ID Journal Published Year Pages File Type
157676 Chemical Engineering Science 2010 6 Pages PDF
Abstract

In this work a novel post-combustion CO2CO2 capture process concept is proposed and developed, based on cryogenic CO2CO2 freeze-out in dynamically operated packed beds. When feeding a flue gas containing CO2CO2, H2OH2O and inert gases to a previously refrigerated packed bed, an effective separation between CO2CO2, H2OH2O and the permanent gases can be achieved on the basis of differences in dew and sublimation points. Temperature and concentration fronts will develop, which move through the bed with different velocities. H2OH2O and CO2CO2 will condensate and desublimate, respectively, extracting the cold energy stored in the packing and therefore avoiding unacceptable pressure drop or plugging. Great advantage is that both H2OH2O and CO2CO2 can be separated from a flue gas simultaneously, circumventing costly pretreatment steps. Furthermore, no chemical absorbent or elevated pressures are required.Experiments have been carried out and demonstrated that CO2CO2 can be well separated from N2N2. The process is described by a pseudo-homogeneous 1D model. The resulting simulations show good resemblance with experiments.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,