Article ID Journal Published Year Pages File Type
1577593 Materials Science and Engineering: A 2012 6 Pages PDF
Abstract

This article aims at presenting the Nimonic 263 as-processed microstructure of the selective laser melting which is an innovative process. Because the melting pool is small and the scanning speed of the laser beam is relatively high, the as-processed microstructure is out-of-equilibrium and very typical to additive manufacturing processes. To match the industrial requirement, the microstructures are modified through heat treatments in order to either produce precipitation hardening or relieve the thermal stresses. Tensile tests at room temperature give rise to high mechanical properties close or above those presented by Wang et al. [1]. However, it is noted a strong anisotropy as a function of the building direction of the samples because of the columnar grain growth.

► We examine the as-fabricated microstructure of the Nimonic 263 processed by selective laser melting. ► We optimized heat treatments to modify the microstructure and improve the mechanical properties. ► We tested through tensile tests the various microstructures in order to compare the effects of the heat treatments.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,