Article ID Journal Published Year Pages File Type
1577769 Materials Science and Engineering: A 2012 9 Pages PDF
Abstract

β Processing (deformation in β phase field followed by heat treatment in α + β phase field) and β annealing (deformation in α + β phase field followed by annealing in β phase field) were carried out to research their influence on microstructures and mechanical properties including fracture toughness of TC4-DT titanium alloy. The tensile properties at room and high temperature as well as fracture toughness were tested for all the experiment conditions. The microstructure evolution and fracture surfaces were researched by optical microscope and scanning electronic microscope (SEM) and the microstructure features were measured by means of image analysis software. Results showed that the microstructures were lamellar in β processing and acicular Widmanstatten in β annealing respectively. Spheroidization of α lamellar was found in the microstructures of β processing. SEM observation showed that the fracture mechanism changed from transcrystalline in the β processing conditions to a mixture of intercrystalline and transcrystalline at the β annealing conditions. The tensile strength and plasticity did not change much under the β processing conditions. While at β annealing conditions, the strength and plasticity varied with the temperature in a reverse trend. The biggest fracture toughness was obtained at β annealing conditions. It was found that β annealing was preferable to β processing with regard to obtaining high fracture toughness and tensile properties with a little sacrifice of plasticity which does not affect its practice use.

► Effects of β treatments on microstructures and mechanical properties of TC4-DT alloy were studied. ► The microstructure evolutions at each condition were analyzed. ► Influence of microstructures on tensile properties and fracture toughness were studied. ► Relationships among processing parameters–microstructures–properties were determined.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,