Article ID Journal Published Year Pages File Type
1579296 Materials Science and Engineering: A 2010 10 Pages PDF
Abstract

Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,