Article ID Journal Published Year Pages File Type
1579865 Materials Science and Engineering: A 2010 5 Pages PDF
Abstract

The mechanism of grain refinement was studied in titanium subjected to high-rate surface mechanical attrition treatment. By cross-sectional transmission electron microscopy, the deformation structures were systematically characterized in a nanocrystalline (NC) layer of the treated surface which exhibits a grain size gradient. The microstructural evolution with increasing strain involves (1) the formation of slip bands with dislocation-free cells in their interiors, (2) nucleation and migration of high-angle grain boundaries at cell boundaries consisting of high-density tangled dislocations, leading to the formation of submicrosized grains inside the slip bands, followed by (3) the formation of subgrains and dislocation cells inside the submicrosized grains with increasing misorientations, which finally become NC grains. The mechanism of grain refinement was interpreted in terms of the classical migration dynamic recrystallization (DRX) and continuous rotation DRX, respectively, leading to submicrosized and NC grains with increasing strains at high strain rates. The cooperative grain boundary sliding is active at high strain rate, by the presence of arrays of coplanar grain boundaries.

Research highlightsDetailed cross-sectional TEM observations give sound evidences showing the operation of two DRX processes in Ti during severe plastic deformation. The mechanism of grain refinement was interpreted in terms of the classical migration dynamic recrystallization (DRX) and continuous rotation DRX, respectively, leading to submicrosized and NC grains with increasing strains at high strain rates.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,