Article ID Journal Published Year Pages File Type
158025 Chemical Engineering Science 2009 7 Pages PDF
Abstract

Molecular dynamics (MD) simulation was used to study the swelling properties of poly(vinyl alcohol) (PVA) in ethanol solutions containing 15, 30 and 45 wt% water. The characteristics of the swollen PVA, intrinsic relation between the microstructure of the swollen PVA and the diffusion of water and ethanol in the PVA matrix were analyzed. It was found that the free volume of the swollen PVA reduced with reductions in the degree of crystallinity was accompanied by an increase in the mobility of PVA chains. Water located mostly in the hydrophilic region of the hydroxyl groups of PVA chains; and hydrogen bonding formed between water and PVA. It was also noted water clusters form in the swollen PVA, whose size increased with increasing degree of swelling, whereas ethanol molecules disperse almost individually in the PVA matrix. The diffusion coefficients of water and ethanol in the swollen PVA are predicted to increase linearly with increasing swelling.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,