Article ID Journal Published Year Pages File Type
1580254 Materials Science and Engineering: A 2009 7 Pages PDF
Abstract
Two-dimensional discrete dislocation dynamics simulations are used to model the plastic deformation of an fcc metallic material containing large densities of defects. An obstacle model is proposed, based on the line tension concept. Increasing yield strength and hardening are obtained when the obstacle density is increased and destroyable junctions are included. A high dislocation source density is used to obtain a good dissemination of dislocations. Over 30% of the total density is stored as junctions. Slip is shown to be localized within a few intense slip bands, whatever the obstacle density. This localization is quantified as a function of the density of obstacles.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,