Article ID Journal Published Year Pages File Type
1580432 Materials Science and Engineering: A 2009 8 Pages PDF
Abstract
We have investigated the age-hardening responses and corresponding microstructures of Mg-0.3Ca-xZn (x = 0.0, 0.1, 0.3, 0.6, 1.0, 1.6 at.%) alloys by hardness test, transmission electron microscopy (TEM), and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). Zn additions up to x = 0.6 lead to enhanced age-hardening responses with the highest peak hardness of HV = 69 for x = 0.6. Further addition of Zn degraded the age-hardening responses. HAADF-STEM images revealed that the finely dispersed monolayer G.P. zones with internal ordered structure are the major contributor to the age-hardening. Excess addition of Zn resulted in the formation of Ca2Mg6Zn3 precipitates suppressing the formation of the ordered G.P. zones.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,