Article ID Journal Published Year Pages File Type
1580578 Materials Science and Engineering: A 2010 8 Pages PDF
Abstract

Ti–6Al–4V open cellular foams were fabricated by additive manufacturing using electron beam melting (EBM). Foam models were developed from CT-scans of aluminum open cellular foams and embedded in CAD for EBM. These foams were fabricated with solid cell structures as well as hollow cell structures and exhibit tailorable stiffness and strength. The strength in proportion to the measured microindentation hardness is as much as 40% higher for hollow cell (wall) structures in contrast to solid, fully dense EBM fabricated components. Plots of relative stiffness versus relative density were in good agreement with the Gibson–Ashby model for open cellular foam materials. Stiffness or Young's modulus values measured using a resonant frequency-damping analysis technique were found to vary inversely with porosity especially for solid cell wall, open cellular structure foams. These foams exhibit the potential for novel biomedical, aeronautics, and automotive applications.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , , , ,