Article ID Journal Published Year Pages File Type
1580772 Materials Science and Engineering: A 2009 5 Pages PDF
Abstract

A constitutive model for the mechanical behaviour of single-crystalline superalloys at high temperatures has been developed. The model relies on the slip system theory and is able to predict rafting and its influence on plastic flow. The kinetics of rafting are assumed to be driven by the reduction of the internal stresses represented by the macroscopic back-stress. The rafting effect is incorporated in the model through the dependence of the Orowan stress on the channel width. The model has been validated for the alloy CMSX-4 at 950 °C. The rafting part of the model has been calibrated by measurements of the channel widths after several levels of creep strains and for several loads.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,