Article ID Journal Published Year Pages File Type
1581215 Materials Science and Engineering: A 2009 4 Pages PDF
Abstract

The high-cycle fatigue behavior of smooth and notched samples of ultrafine-grained titanium prepared by severe plastic deformation is compared with the corresponding properties of conventional titanium. It is shown that the combination of high strength and enhanced ductility of ultrafine-grained titanium lead to an increase of the fatigue endurance limit. Using a combination of equal-channel angular pressing and subsequent thermal and mechanical treatment, it was possible to increase the fatigue endurance limit of commercial-purity titanium by a factor of 1.5. Furthermore, it is shown that post-deformation annealing can additionally enhance the ductility of the ultrafine-grained Ti and lower fatigue-notch sensitivity particularly in comparison with Ti-6Al-4V.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,