Article ID Journal Published Year Pages File Type
1581383 Materials Science and Engineering: A 2008 7 Pages PDF
Abstract
The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,