Article ID Journal Published Year Pages File Type
1581724 Materials Science and Engineering: A 2009 7 Pages PDF
Abstract
This paper discusses the effects of a combination of plasma-carburizing and deep-rolling on notch fatigue properties of a Ti-6Al-4V alloy. Circumferentially V-notched cylindrical Ti-6Al-4V alloy specimens were plasma-carburized at a relatively low temperature for the improvement of wear resistance, and then, deep-rolled at the notch root for inducing compressive residual stress. Scanning electron microscopy, optical microscopy, laser scanning microscopy, surface roughness tester, and micro-hardness tester were used to characterize the modified surface layer at the notch root. Axial loading fatigue tests (R = 0.1) were performed using a servo-hydraulic testing machine in a laboratory atmosphere at an ambient temperature. The notch fatigue life of the specimen was reduced by plasma-carburizing due to the brittleness caused by the higher hardness in addition to the disappearance of compressive residual stress on the notched surface, but remarkably improved by the subsequent deep-rolling. The surface layer containing the compressive residual stress and the work hardening induced by deep-rolling effectively prevented and delayed the fatigue crack initiation and propagation of deep-rolled carburized specimen.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,