Article ID Journal Published Year Pages File Type
1582732 Materials Science and Engineering: A 2008 6 Pages PDF
Abstract

Modeling of the static recrystallization in deformed copper specimens with different initial grain sizes is carried out based on a previous dislocation–grain size interaction model and a Monte Carlo simulation. From the dislocation–grain size interaction model, the stored energy of the deformed copper is calculated considering the interaction of the dislocations due to the different initial grain sizes. Then, utilizing the stored energy and Monte Carlo simulation the kinetic of recrystallization and recrystallized grain sizes are obtained. The JMAK plots of the modeling results show that, in conditions of 2D modeling and site-saturated nucleation, the Avrami exponent is 2 ± 0.1. The time for 50% recrystallization and recrystallized grain size increase by increasing the initial grain size at a specific strain and are consistent with the experimental data.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
,