Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1582933 | Materials Science and Engineering: A | 2008 | 7 Pages |
Abstract
Three different aluminium foams, manufactured by compact powder technology starting from 7075, 6061 and AlSi7 alloys were studied by performing microstructural and morphometric analyses, with the aim of explaining their different behaviour during axial crushing. Void distribution coupled with material microstructure justifies the behaviour of load-displacement curves obtained during axial crushing of the foams. The results show that 7075 alloy seems to be the material having the best behaviour during crushing, at least when the foam is removed of the external walls. Despite that outer skin presence coupled with the intrinsic brittle behaviour of this alloy may cause instability, if it is used to fill hollow components like crashboxes. During deformation process 6061 and AlSi7 alloys that are more ductile, give in and maintain contact adapting to the encasement deformation.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Francesca Campana, Daniela Pilone,