Article ID Journal Published Year Pages File Type
1583024 Materials Science and Engineering: A 2008 6 Pages PDF
Abstract

Samples of pure Cu, bronze (Cu–10 wt.% Zn) and brass (Cu–30 wt.% Zn) with stacking fault energies (SFE) of 78, 35, and 14 mJ/m2, respectively, were processed by high-pressure torsion (HPT) and by a combination of HPT followed by cold-rolling (CR). X-ray diffraction measurements indicate that a decrease in SFE leads both to a decrease in crystallite size and to increases in microstrain, dislocation and twin densities for the HPT and HPT + CR processed ultrafine-grained (UFG) samples. Compared with processing by HPT, subsequent processing by CR refines the crystallite size of all samples, increases the twin densities of UFG bronze and brass, and increases the dislocation density in UFG bronze. It also decreases the dislocation density in UFG brass and leads to an unchanged dislocation density in UFG copper. The results suggest there may be an optimum stacking fault energy for dislocation accumulation in UFG Cu–Zn alloys and this has important implications in the production of materials having reasonable strain hardening and good tensile ductility.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,