Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1583367 | Materials Science and Engineering: A | 2007 | 7 Pages |
Importance of polycrystalline silicon has been recognized in the electronic device technology. The interfacial states in the band-gap and potential barrier associated with grain boundaries in polycrystalline silicon can exert their detrimental influence on electrical conductivity and then on device performance. However, all grain boundaries are not similarly potential sites for electrical activity because individual grain boundaries have their own character depending on the orientation relation between two adjoining grains. We apply the electron-beam-induced current technique and the Kelvin probe force microscopy to observe the carrier recombination intensity and the potential barrier height, respectively, at well-characterized grain boundaries in semiconductor-grade polycrystalline silicon. The results are compared with the previously observed ones in solar-grade silicon to examine the factors affecting electrical activity of grain boundaries.