Article ID Journal Published Year Pages File Type
1583479 Materials Science and Engineering: A 2007 9 Pages PDF
Abstract

Tensile properties for paraffin wax and a nanocomposite produced with 2 wt.% Cloisite® 20A were measured within the temperature range of 10 to 30 °C. Young's modulus and maximum stress are significantly greater at 10 °C for the nanocomposite than those measured for the pure wax. Values for both materials decrease with increasing temperature and converge to where little difference exists as the wax enters a series of plastic crystalline states. Large enhancements in ductility for these nanocomposites reported previously are shown to be a consequence of a decrease in their brittle–ductile transition temperatures. Reduced crystallite size was observed via polarized optical microscopy for the nanocomposite and X-ray diffraction and transmission electron microscopy demonstrate preferred alignments of wax lamellae and organo-clay platelets under strain. Results indicate that a combination of proximity to mesophases and influence of organo-clay on wax morphology and on the fracture mechanism account for the observed high ductility under ambient conditions.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,