Article ID Journal Published Year Pages File Type
1584030 Materials Science and Engineering: A 2007 10 Pages PDF
Abstract

Carbon nanofiber (CNF) dispersed β-SiC composites with the addition of 0.2 mass% boron and 2.0 mass% carbon as sintering aids have been synthesized and consolidated simultaneously from mixtures of Si, amorphous C and B powders and CNF by pulsed electric-current pressure sintering (PECPS). Synthesis and consolidation process, which were observed from their expansion and shrinkage curves during PECPS, have been examined using X-ray diffraction and scanning electron microscopy for the powder compacts. CNF/SiC composites sintered at 1800 °C for 10 min under 40 MPa in a vacuum have ∼96.0% of theoretical density and homogeneous structures consisting of ∼4.0 μm grains. A 10 vol% CNF/SiC composite exhibited excellent mechanical properties: a bending strength of ∼720 MPa, a Vickers hardness of ∼26.0 GPa, and a fracture toughness of ∼5.5 MPa m1/2. High-temperature bending strength of ∼890 MPa at 1200 °C in air was attained with the same nanocomposites.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,