Article ID Journal Published Year Pages File Type
1586051 Materials Science and Engineering: A 2006 6 Pages PDF
Abstract

Systematic experimental work [S. Zhuang, G. Ravichandran, D. Grady, J. Mech. Phys. Solids 51 (2003) 245–265] on laminated composites subjected to high velocity impact loading exhibits the dispersed wave field and the oscillatory behavior of waves with respect to a mean value. Such a behavior is absent in homogeneous solids. An approximate solution to the plate impact in layered heterogeneous solids has been developed in [X. Chen, N. Chandra, A.M. Rajendran, Int. J. Solids Struct. 41 (2004) 4635–4659]. The influence of the particle velocity on many process characteristics was demonstrated. Based on earlier results [A. Berezovski, J. Engelbrecht, G.A. Maugin, Arch. Appl. Mech. 70 (2000) 694–706], numerical simulations of one-dimensional wave propagation in layered nonlinear heterogeneous materials have been performed. The formulated problem follows a conventional experimental configuration of a plate impact. An extension of the high-resolution finite volume wave-propagation algorithm [R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002] is used. The speed of sound depends nonlinearly on a current stress value in each layer but also on the mismatch properties of layers. Results of numerical simulations capture the experimental data rather well.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,