Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
158725 | Chemical Engineering Science | 2006 | 9 Pages |
A novel computational fluid dynamic (CFD) modeling procedure was developed in order to simulate ultraviolet (UV) photoreactors in the Eulerian framework. In this procedure, the governing equations of radiation distribution, mass conservation, momentum conservation, and species mass conservation are solved together in order to determine the radiant energy field, velocity field, and the concentration profile of microorganisms at steady state conditions. The general method presented can be employed to derive the volumetric inactivation rate and the theoretical efficiency of a UV photoreactor. The integrated CFD model of UV photoreactor performance was successfully evaluated with experimental biodosimetry results. The verified procedure can be applied to the simulation and design optimization of UV photoreactors with different geometries and operating conditions.