Article ID Journal Published Year Pages File Type
1589037 Micron 2014 15 Pages PDF
Abstract
This paper introduces a hedge operator based fuzzy divergence measure and its application in segmentation of leukocytes in case of chronic myelogenous leukemia using light microscopic images of peripheral blood smears. The concept of modified discrimination measure is applied to develop the measure of divergence based on Shannon exponential entropy and Yager's measure of entropy. These two measures of divergence are compared with the existing literatures and validated by ground truth images. Finally, it is found that hedge operator based divergence measure using Yager's entropy achieves better segmentation accuracy i.e., 98.29% for normal and 98.15% for chronic myelogenous leukocytes. Furthermore, Jaccard index has been performed to compare the segmented image with ground truth ones where it is found that that the proposed scheme leads to higher Jaccard index (0.39 for normal, 0.24 for chronic myelogenous leukemia).
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,