Article ID Journal Published Year Pages File Type
1589763 Micron 2007 15 Pages PDF
Abstract
Nanotechnology has already started to significantly impact many industries and scientific fields including biotechnology, pharmaceutics, food technology and semiconductors. Nanotechnology-based tools and devices, including high-resolution imaging techniques, enable characterization and manipulation of materials at the nanolevel and further elucidate nanoscale phenomena and equip us with the ability to fabricate novel materials and structures. One of the most promising impacts of nanotechnology is in the area of nanotherapy. Employing nanosystems such as dendrimers, nanoliposomes, niosomes, nanotubes, emulsions and quantum dots, nanotherapy leads toward the concept of personalized medicine and the potential for early diagnoses coupled with efficient targeted therapy. The development of smart targeted nanocarriers that can deliver bioactives at a controlled rate directly to the designated cells and tissues will provide better efficacy and reduced side effects. Nanocarriers improve the solubility of bioactives and allow for the delivery of not only small-molecule drugs but also the delivery of nucleic acids and proteins. This review will focus on nanoscale bioactive delivery and targeting mechanisms and the role of high-resolution imaging techniques in the evaluation and development of nanocarriers.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,