Article ID Journal Published Year Pages File Type
1590160 Micron 2006 8 Pages PDF
Abstract

The trend in reducing device dimension induces new physical properties and requires the development of measurement tools at the nanometer scale. This paper deals with the relation between magnetism and structure of thin films. We have chosen cobalt as a ferromagnetic layer and chromium as a bcc buffer. Magnetic and structural investigations have been led on epitaxial Co/Cr layers grown on MgO (001) substrates. The thickness of the cobalt layer varies from 0.75 to 20 nm. Investigations on the cobalt layer by EXAFS and HRTEM give evidence for a bcc or a hcp structure depending on the cobalt thickness. Magnetic measurements using SQUID indicate that the saturation magnetisation per volume unit is constant for the layers. EELS experiments have been carried out to measure any evolution in the I(L3)/I(L2) ratio for ferromagnetic layers of different thickness. We discuss the influence of structural and magnetic contributions on the evolution of the ratio with the cobalt thickness.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,