Article ID Journal Published Year Pages File Type
1590754 Science and Technology of Advanced Materials 2007 8 Pages PDF
Abstract
A novel phase-field model for electrochemical processes, in which cations were driven by an electrostatic potential coupled with a thermodynamic potential, was formulated from a variation of the Ginzburg-Landau free-energy functional. Using this model, an electrodeposition process of copper deposits from copper-sulfate solution was studied using a phase-field simulation. The dependence of the growth velocity of the electrode on the applied voltage was examined in a one-dimensional system. Then, the morphological transition of the electrodeposits as functions of the applied voltage and the composition ratio of copper ion in electrolyte was examined using a two-dimensional system. Thin and dense branches were observed at a low applied voltage. The shape of the branches became more complicated as the composition ratio was lowered.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,