Article ID Journal Published Year Pages File Type
1590910 Science and Technology of Advanced Materials 2007 8 Pages PDF
Abstract
A series of mesoporous silicas (MS-1-MS-9) were synthesized at different gel compositions using a triblock copolymer (TCP), poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), as the surfactant. The interactive effects of acidity, the contents of tetraethyl orthosilicate (TEOS) and the surfactant, and the gelling temperature on the characteristics of the final material were simultaneously characterized. Increasing acidity favored mesopore formation. A material with a surface area of 760 m2/g, mostly in the mesoporous range, was obtained at 1.0(TEOS):0.017(TCP):7.3HCl:115.7H2O. Mesopore formation was predominantly determined by the TEOS:TCP ratio and was promoted with its increase from 1.56:1 to 2.09:1. A further increase to 2.61:1 was detrimental. Whereas increasing the TCP content to 3.5% w/w improved micellization, a further increase to 4.6% should be avoided. Mesoporous silicas showed low crystallinity but a high degree of hexagonal mesoscopic organization. The weak surface acidity was attributed to surface silanols, the number of which was proportional to mesoporosity.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,