Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1590914 | Science and Technology of Advanced Materials | 2007 | 4 Pages |
Abstract
Electronic structure of air-stable, high-performance organic field-effect transistor (OFET) material, 2,7-dipheneyl[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT), was discussed based on the molecular orbital calculations. It was suggested that the stability is originated from relatively low-lying HOMO level, despite the fact that the molecule contains highly Ï-extended aromatic core ([1]benzothieno[3,2-b]benzothiophene, BTBT) with four fused aromatic rings like naphthacene. This is rationalized by the consideration that the BTBT core is not isoelectronic with naphthacene but with chrysene, a cata-condensed phene with four benzene rings. It is well known that the acene-type compound is unstable among its structural isomers with the same number of benzene rings. Therefore, polycyclic aromatic compounds possessing the phene-substructure will be good candidates for stable organic semiconductors. Considering synthetic easiness, we suggest that the BTBT-substructure is the molecular structure of choice for developing air-stable organic semiconductors.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Kazuo Takimiya, Tatsuya Yamamoto, Hideaki Ebata, Takafumi Izawa,