Article ID Journal Published Year Pages File Type
1592242 Solid State Communications 2013 5 Pages PDF
Abstract
The electrodynamics of a two-dimensional gas of massless fermions in graphene is studied by a collisionless hydrodynamic approach. A low-energy dispersion relation for the collective modes (plasmons) is derived both in the absence and in the presence of a perpendicular magnetic field. The results for graphene are compared to those for a standard two-dimensional gas of massive electrons. We further compare the results within the classical hydrodynamic approach to the full quantum mechanical calculation in the random phase approximation. The low-energy dispersion relation is shown to be a good approximation at small wave vectors. The limitations of this approach at higher order are also discussed.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,