Article ID Journal Published Year Pages File Type
1594118 Solid State Communications 2010 4 Pages PDF
Abstract

The high pressure melting curve of CaSiO3 perovskite is simulated by using the constant temperature and pressure molecular dynamics method combined with effective pair potentials for the first time. The simulated results for the partial radial distribution function all compare well with experiment. The calculated equation of state is very successful in accurately reproducing the recent experimental data over a wide pressure range. The predicted high pressure melting curve is in good agreement with the experimental ones, and the melting curve up to the core–mantle boundary pressure, being very steep at lower pressures, rapidly flattens on increasing pressure. The present results also suggest the validity of the experimental data of Zerr and Boehler.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,