Article ID Journal Published Year Pages File Type
1594744 Solid State Communications 2009 5 Pages PDF
Abstract

Spin–orbit coupling in 5d transition metal oxides such as Ir oxides is expected to be strong due to large atomic number of Ir and electron correlation strength will be weak due to large radial extension of the 5d orbitals. Hence, various anomalous electronic properties often observed in these systems are attributed to large spin–orbit interaction strength. Employing first principles approaches, we studied the electronic structure of Y 2Ir2O7, which is insulating and exhibits ferromagnetic phase below 150 K. The calculated results reveal breakdown of both the above paradigms. The role of spin–orbit interaction is found to be marginal in determining the insulating ground state of Y 2Ir2O7. A large electron correlation strength is required to derive the experimental bulk spectrum.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
,