Article ID Journal Published Year Pages File Type
1594766 Solid State Communications 2009 4 Pages PDF
Abstract

The intermartensitic transformation, in a two-step complete thermoelastic martensitic transformation in Ni53.2Mn22.6Ga24.2 single crystals, provides a much larger strain than that of the martensitic transformation. With a biasing magnetic field, the intermartensitic transformation strain is inhibited and the martensitic transformation strain is enhanced. Compressive stress–strain characteristics can be affected greatly by a static magnetic field. At low deformation temperature, the irreversible transformation strain induced by the stress becomes reversible, when a static magnetic field is applied. Further, the magnitude of the stress necessary for rearrangement of martensitic variants is dependent on the direction of the biasing magnetic field. Moreover, a well-defined character of the twin-boundary motion, similar to the soliton motion, has been observed upon loading or unloading.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , , ,