Article ID Journal Published Year Pages File Type
1595082 Solid State Communications 2008 5 Pages PDF
Abstract
The lifetime of dense orthoexcitons in Cu2O is severely limited by dark molecule formation. In order to investigate this two-body process for orthoexciton-polaritons, we employ two-photon excitation and resonantly create orthoexciton-polaritons at 2 K, which are the coherent quantum superposition of orthoexcitons and the light field. Based on the steady-state analysis, we find that this density-dependent process is an order of magnitude reduced for resonantly created orthoexciton-polaritons compared with thermalized orthoexcitons at 2 K. This most likely arises from the photonic character of an orthoexciton-polariton. Considering the greatly reduced effective mass of the orthoexciton-polariton, this implies that the experimentally achievable orthoexciton-polariton densities can be above the critical density for Bose-Einstein condensation. However, insufficient elastic scattering seems to keep this propagating quantum ensemble from internal equilibrium.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,