Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1596073 | Solid State Communications | 2007 | 6 Pages |
Abstract
We solve a self-consistent equation for the d-wave superconducting gap and the magnetization in the mean-field approximation, study the Zeeman effects on the thermodynamic potential of d-wave superconductor (S) and coherent quantum transport in normal-metal (N)/d-wave S/N double tunnel junctions. Taking simultaneously into account the electron-injected current from one N electrode and the hole-injected current from the other N electrode, we derive a general formula for the differential conductance in a N/d-wave S/N system under a Zeeman magnetic field on the d-wave S. It is found that oscillations of all quasiparticle transport coefficients and differential conductance with the bias voltage and the thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. In the N/d-wave S/N junctions, the Zeeman magnetic field can lead to the Zeeman splitting of conductance peaks, and the temperature can reduce the coherent effect.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Z.C. Dong,