Article ID Journal Published Year Pages File Type
1596614 Solid State Communications 2006 7 Pages PDF
Abstract

The luminescence properties of Er3+ doped alkali tellurite [ TeO2–M2O (M=Li, Na and K)] glasses are investigated. Infrared to visible upconversion emissions are observed at 410, 525, 550 and 658 nm using 797 nm excitation. These bands are assigned to the 2H9/2  →4I15/2, 2H11/2  →4I15/2, 4S3/2  →4I15/2, 4F9/2  →4I15/2 transitions of Er3+ respectively. Detailed study reveals that the 2H9/2  →4I15/2 transition at 410 nm involves a three-step process while the other transitions involve two-steps. Excitation with 532 nm radiation gives additional bands at 380, 404, 475 and 843 nm wavelengths due to the 4G11/2  →4I15/2, 2P3/2  →4I13/2, 2P3/2  →4I11/2, and 4S3/2  →4I13/2 transitions, respectively, along with the bands observed on NIR excitation. The fluorescence yield is found to be largest for the TeO2–Na2O glass. The lifetime of the 4S3/2 level has been measured for all the three cases and used to explain the upconversion mechanisms. The fluorescence intensity ratio corresponding to the two thermally coupled levels (2H11/2, 4S3/2) has been used to estimate the temperature of the glass. It is observed that the temperature sensing capacity of TeO2–Li2O glass is better than the other two glasses.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,