Article ID Journal Published Year Pages File Type
1596955 Solid State Communications 2007 6 Pages PDF
Abstract

A magnon–phonon interaction model is developed on the basis of a two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory we studied the transverse and longitudinal acoustic phonon dampings and calculated the transverse and longitudinal acoustic phonon damping curves on the main symmetric point and line in the first Brillouin zone. It is found that on the line ΔΔ there is no damping for transverse acoustic phonon and on the line ZZ there is no damping for longitudinal acoustic phonon. In the first Brillouin zone the damping of transverse acoustic phonons is at least one order larger than that of longitudinal acoustic phonons. The influences of various parameters on transverse and longitudinal acoustic phonon dampings are discussed and the lifetime and the density of state of transverse and longitudinal acoustic phonons are explored as well according to the relation of the phonon damping and its lifetime and the relation of the phonon damping and its density of state.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,