Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1600414 | Intermetallics | 2012 | 5 Pages |
The microstructure and magnetic properties of the amorphous Co-Fe-Zr-B thin films grown on glass substrates by dc magnetron sputtering are investigated using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) techniques. The Co-Fe-Zr-B thin films deposited at room temperature were annealed at temperatures ranged from 683 K to 773 K. Experimental results indicated that the coercivity (Hc) of the Co-Fe-Zr-B thin films is significantly influenced by residual stress and crystalline phases within the films. The correlation of the coercivity and the microstructure of Co-Fe-Zr-B thin films are discussed. After annealed at 683 K, the coercivity of the Co-Fe-Zr-B film was as low as 1.2 Oe.