Article ID Journal Published Year Pages File Type
1601615 Intermetallics 2007 7 Pages PDF
Abstract

In the present work, the Nb–B binary system was thermodynamically optimized. The stable phases in this system are BCC (niobium), Nb3B2, NbB, Nb3B4, Nb5B6, NbB2, B (boron) and liquid L. The borides Nb3B2, NbB, Nb3B4 and Nb5B6 and the B (boron) were modeled as stoichiometric phases and the liquid L, BCC (niobium) and NbB2 as solutions, using the sublattices model, with their excess terms described by the Redlich–Kister polynomials. The Gibbs energy coefficients were optimized based on the experimental values of enthalpy of formation, low temperature specific heat, liquidus temperatures and temperatures of invariant transformations. The calculated Nb–B diagram reproduces well the experimental values from the literature.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , ,