Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1601943 | Intermetallics | 2007 | 9 Pages |
Dual multi-phase intermetallic alloy, which is composed of Ni3Al(L12) and Ni solid solution (A1) phases at high-temperature annealing and is additionally refined by a eutectoid reaction at low temperature aging, according to which the Al phase is transformed into the Ni3Al(L12) + Ni3V(DO22) phases, was prepared based on the pseudo-ternary system Ni3Al–Ni3Ti–Ni3V. The high-temperature tensile deformation, fracture behavior and tensile creep were investigated using single crystalline material. The alloy with such a novel microstructure shows extremely high yield and tensile strength with good temperature retention, when compared not only with conventional Ni-based superalloys but also with polycrystalline materials reported previously. Over a broad temperature range fracture occurred along octahedral plane in the major component L12 phase, accompanied with high tensile elongation and ductile fracture mode. The tensile creep test conducted at 1173 K and 1223 K showed the presence of threshold stress, and also extremely low creep rate and long creep rupture time when compared with conventional Ni-based superalloys. The obtained results are promising for the development of a new-type of high-temperature structural material.