Article ID Journal Published Year Pages File Type
1602002 Intermetallics 2006 5 Pages PDF
Abstract
The structure of the as-milled powders and consolidated compacts was characterized by X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. While the thermal stability was examined by differential scanning calorimeter (DSC). In addition, the mechanical property of the consolidated BMGs was evaluated by Vickers microhardness tests. The experimental results showed that W nanoparticles ranged from 20 to 200 nm were embedded within the amorphous matrix. The presence of W nanoparticles did not dramatically change the glass formation ability of amorphous Ti50Cu28Ni15Sn7 powders. While the thermal stability of amorphous powders differed from those of its composites. A significant hardness increase with W additions was noticed for consolidated composite compacts.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , ,