Article ID Journal Published Year Pages File Type
1603009 International Journal of Refractory Metals and Hard Materials 2015 8 Pages PDF
Abstract

•Unlubricated wear behavior of hot pressed Tyranno-SA SiC fibers was evaluated.•A decrease of the friction coefficient of the material with load was attributed to the presence of residual C.•Friction coefficient shows no significant dependence with sliding speed in the range of 25–100 mm/s.•Wear rates of the order of 100 mm3/MJ were obtained.•Microfracture of the fibers is the main wear mechanism in all cases.

Advanced SiC-based ceramics and fiber reinforced composites are interesting materials for a wide variety of applications involving sliding wear conditions because of their excellent thermomechanical properties. The microstructure and wear resistance of sintered SiC fiber bonded ceramics (SA Tyrannohex) were studied. The material is composed of SiC-fibers in two orientations, with polygonal cross sections and cores having higher carbon content than their surroundings, as observed with SEM. A thin layer of C exists between the fibers. This layer has been found to be a turbostratic-layered structure oriented parallel to the fiber surface. XRD shows that the material is highly crystalline and composed mostly of β-SiC. Unlubricated wear behavior of the SA-Tyrannohex material when sliding against a Si3N4 ball in air at room temperature was evaluated. Experiments were performed using a pin on disk apparatus, under different normal loads of 2, 5 and 10 N at sliding speeds of 25, 50, 100 mm/s. A decrease of the friction coefficient with load was found due to the presence of the turbostratic carbon layer between the fibers. Wear rates of the order of 100 mm3/MJ were obtained, independently of sliding speed. Microfracture of the fibers is the main wear mechanism.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , ,