Article ID Journal Published Year Pages File Type
1603346 International Journal of Refractory Metals and Hard Materials 2014 6 Pages PDF
Abstract

•W–30Cu composite was prepared by electroless plating and powder metallurgy.•The relative density of W–30Cu composite reached 95.02%.•W–30Cu composite had electrical conductivity of 53.24%.

Powder metallurgy technique was employed to prepare W–30 wt.% Cu composite through a chemical procedure. This includes powder pre-treatment followed by deposition of electroless Cu plating on the surface of the pre-treated W powder. The composite powder and W–30Cu composite were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Cold compaction was carried out under pressures ranging from 200 MPa to 600 MPa while sintering at 850 °C, 1000 °C and 1200 °C. The relative density, hardness, compressive strength, and electrical conductivity of the sintered samples were investigated. The results show that the relative sintered density of the titled composites increased with the sintering temperature. However, in solid sintering, the relative density increased with pressure. At 1200 °C and 400 MPa, the liquid-sintered specimen exhibited optimum performance, with the relative density reaching as high as 95.04% and superior electrical conductivity of IACS 53.24%, which doubles the national average of 26.77%. The FE-SEM microstructure evaluation of the sintered compacts showed homogenous dispersion of Cu and W and a Cu network all over the structure.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , ,