Article ID Journal Published Year Pages File Type
1604273 International Journal of Refractory Metals and Hard Materials 2010 4 Pages PDF
Abstract

Ti–Al–N coatings are widely used to prevent the untimely consumption of cutting tools exposed to wear. Increasing requirements on high speed and dry cutting application open up new demands on the quality of wear-protective quaternary or multinary Ti–Al–N based coating materials. Here, we investigated the microstructure and mechanical properties of Ti–Al–N and Ti–Al–Si–N coatings deposited on cemented carbide by cathodic arc evaporation. The formation of nanocomposite nc-TiAlN/a-Si3N4 structure by incorporation of Si into Ti–Al–N coating causes a significant increase on hardness from ∼ 35.7 GPa of Ti–Al–N to ∼ 42.4 GPa of Ti–Al–Si–N. Both coatings behave age-hardening during thermal annealing, however Ti–Al–Si–N coating reveal better thermal stability. Therefore, the improved cutting performance of Ti–Al–Si–N coated inserts is obtained compared to Ti–Al–N coated inserts.

Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , ,