Article ID Journal Published Year Pages File Type
1605564 Journal of Alloys and Compounds 2016 8 Pages PDF
Abstract
UCoAl is a 5f-band metamagnet with a uniquely low paramagnetic-to-ferromagnetic transition field, 0.7 T, extremely sensitive to any perturbation such as elemental substitution. Here, we study variations of magnetic properties in the UCoAl-UOsAl system on single- and polycrystalline samples with different concentration of Os. We found that osmium can substitute Co in UCoAl up to 20%, while preserving the ZrNiAl structure type. Pure UOsAl was identified as a hexagonal Laves phase, MgZn2 type. It is a weak Pauli paramagnet. Even a 2%-substitution of Os for Co in the 5f band metamagnet stabilizes ferromagnetism with the Curie temperature TC = 26 K and uranium magnetic moment μU = 0.4 μB and shifts the critical metamagnetic field to zero. Higher Os concentrations enhance both TC and μU. All magnetic response is concentrated into the c-axis; the susceptibility for magnetic field perpendicular to c is low and practically temperature-independent. Our study reflects the decisive role of the 5f-5d hybridization in the magnetism of the UCoAl-UOsAl system. This work completes the study of the alloying of UCoAl with late transition metals and indicates that the non-magnetic phase exhibiting band metamagnetism is very limited in the concentration range.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , ,