Article ID Journal Published Year Pages File Type
1606654 Journal of Alloys and Compounds 2016 8 Pages PDF
Abstract
The ternary Mg67−xPdxCo33 (x = 1, 3, 5, 7) alloys were prepared and served as anode materials for the Ni-MH battery system. Pd facilitates the formation of a full body-centered cubic (BCC) phase in binary Mg67Co33. All Mg67−xPdxCo33 (x = 1, 3, 5, 7) alloys possess BCC structure in nano-crystalline, which were observed by XRD and TEM analyses. In addition, their lattice parameters increase with the augmentation of Pd content. The charge-discharge experiments show that Mg64Pd3Co33 owns the maximum discharge capacity of 624 mAh g−1 among Mg67−xPdxCo33 (x = 1, 3, 5, 7) electrodes, which was greatly enhanced from our previously studied binary Mg-Co and ternary Mg-Co-Pd electrodes. All electrochemical kinetics e.g. exchange current density, hydrogen atomic diffusion capability were improved by substituting Pd for Mg, which were also relevant with the increment of Pd amount in the alloys. X-ray photoelectric spectroscopy (XPS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) demonstrated that Pd relieved the severe corrosions and capacity degradations of the electrodes.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , ,