Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1608278 | Journal of Alloys and Compounds | 2015 | 8 Pages |
Abstract
The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV500) than both the unreinforced quasicrystalline alloy (159 ± 1 μHV500) and crystalline aluminium nanocomposites reported in the literature [1]. Methods and analysis of material behaviour put forward in this work inform further understanding and optimisation of this and other nanocomposite systems containing a metastable microstructure matrix.
Related Topics
Physical Sciences and Engineering
Materials Science
Metals and Alloys
Authors
M. Galano, A. Marsh, F. Audebert, W. Xu, M. Ramundo,